【CN論文】一道拋物線定直線問(wèn)題的再探究
瀏覽次數(shù):    時(shí)間:2016-10-24 10:51:10

 


一道拋物線定直線問(wèn)題的再探究


351100     福建省莆田第五中學(xué)   鄭劍暉

 

 

《數(shù)學(xué)通訊》2014年第5、6期(上半月)文【1】由2014年《福建省高考“集結(jié)號(hào)”最后沖刺模擬卷》中的一道壓軸題給出了拋物線焦點(diǎn)與準(zhǔn)線的關(guān)聯(lián)性質(zhì)及推廣,即結(jié)論1、2、3、4,并發(fā)現(xiàn)了拋物線另一優(yōu)美性質(zhì),即結(jié)論5、6. 讀后頗受啟發(fā),但覺(jué)意猶未盡.本文擬對(duì)這些結(jié)論進(jìn)行推廣,并進(jìn)一步探究拋物線在這一相同條件下的另一些優(yōu)美性質(zhì). 先把結(jié)論1~6抄錄如下:

 已知點(diǎn)A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限,直線、分別過(guò)點(diǎn)A、B且與拋物線C相切,點(diǎn)P為直線、的交點(diǎn).                          

結(jié)論1 若直線AB過(guò)拋物線C的焦點(diǎn)F,則動(dòng)點(diǎn)在拋物線C的準(zhǔn)線上.

結(jié)論2 若動(dòng)點(diǎn)在拋物線C的準(zhǔn)線上. 則直線AB過(guò)拋物線C的焦點(diǎn)F,

結(jié)論3 若直線AB過(guò)定點(diǎn)則動(dòng)點(diǎn)在定直線上.

結(jié)論4若動(dòng)點(diǎn)在定直線上, 則直線AB過(guò)定點(diǎn)

結(jié)論5若直線AB過(guò)拋物線C的焦點(diǎn)F,則以AB為直徑的圓過(guò)點(diǎn)P

結(jié)論6 若以AB為直徑的圓過(guò)點(diǎn)P,則直線AB過(guò)拋物線C的焦點(diǎn)F.

以上結(jié)論揭示了拋物線C的焦點(diǎn)與準(zhǔn)線、類(lèi)焦點(diǎn)與類(lèi)準(zhǔn)線的關(guān)聯(lián)性質(zhì),下面對(duì)以上性質(zhì)進(jìn)行推廣和再探究.

 

一、再探究1:探究結(jié)論的推廣

 

上述結(jié)論1、2分別是結(jié)論3、4的特殊情況,而結(jié)論3與結(jié)論4、結(jié)論5與結(jié)論6互為逆命題 .能否把結(jié)論3、4,結(jié)論5、6推廣到更一般的情形?

 先看結(jié)論3、4,若把其中直線AB所過(guò)的“定點(diǎn)”推廣為“定點(diǎn)”,那么動(dòng)點(diǎn)是否在某定直線上?

設(shè)動(dòng)點(diǎn)( ,),則切點(diǎn)弦所在直線的方程為  . 直線過(guò)定點(diǎn),則有,即這表明動(dòng)點(diǎn) ,)在定直線上; 反之,若點(diǎn) ,)在定直線 (在拋物線外部(不含焦點(diǎn)的區(qū)域)的部分)上,則有  .代人直線的方程,得,即這表明直線過(guò)定點(diǎn).由此可把結(jié)論3、4推廣為:

已知點(diǎn)A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限,直線分別過(guò)點(diǎn)A、B且與拋物線C相切,點(diǎn)P為直線、的交點(diǎn).     

結(jié)論7 若直線AB過(guò)定點(diǎn),則動(dòng)點(diǎn)在定直線上. 結(jié)論8 若動(dòng)點(diǎn)在定直線上,則直線AB過(guò)定點(diǎn)

特別地,當(dāng)時(shí),結(jié)論7、8分別為結(jié)論3、4.

對(duì)于結(jié)論5、6 ,其中“以AB為直徑的圓過(guò)點(diǎn)P”,即兩切線、的斜率滿(mǎn)足.若把其中直線AB所過(guò)的“焦點(diǎn)F”推廣為“類(lèi)焦點(diǎn)”,那么兩切線、的斜率應(yīng)滿(mǎn)足什么條件

設(shè)則切線、的方程分別為 . 直線AB過(guò)定點(diǎn)當(dāng)直線AB不與軸垂直即時(shí),直線、的斜率、相等,即亦即.整理得.當(dāng)直線AB軸垂直即時(shí),得;反之,若,把之代入,得,即 當(dāng)直線AB不與軸垂直即時(shí)

,由此可得A、Q、B三點(diǎn)共線,即直線AB過(guò)定點(diǎn). 當(dāng)直線AB軸垂直即時(shí),可得直線AB也過(guò)定點(diǎn).綜上,可把結(jié)論5、6推廣為:

  已知點(diǎn)A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限,直線、分別過(guò)點(diǎn)A、B且與拋物線C相切,點(diǎn)P為直線、的交點(diǎn).

結(jié)論9  若直線AB過(guò)定點(diǎn),則兩切線、的斜率滿(mǎn)足.

結(jié)論10 若兩切線、的斜率滿(mǎn)足,則直線AB過(guò)定點(diǎn)

特別地,當(dāng)時(shí),結(jié)論9、10分別為結(jié)論5、6.

 

二、再探究2探究新結(jié)論

 

在上述結(jié)論的條件下,拋物線C還具有哪些優(yōu)美的性質(zhì)?經(jīng)探究,拋物線C還具有如下一些優(yōu)美的性質(zhì):

  已知點(diǎn)A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限,直線、分別過(guò)點(diǎn)A、B且與拋物線C相切,點(diǎn)P為直線、的交點(diǎn).

結(jié)論11 若直線AB過(guò)拋物線C的焦點(diǎn)F則分別以PA、PB為直徑的圓均過(guò)拋物線C的焦點(diǎn)F.

結(jié)論12 若分別以PA、PB為直徑的圓均過(guò)拋物線C的焦點(diǎn)F,則直線AB過(guò)拋物線C的焦點(diǎn)F.

結(jié)論13 若直線AB過(guò)定點(diǎn),且直線AB、PQ的斜率均存在,則

結(jié)論14 若且直線AB、PQ的斜率均存在,且,直線AB過(guò)定點(diǎn)

結(jié)論15 若直線AB過(guò)定點(diǎn),且直線、PQ、的斜率均存在,則成等差數(shù)列,.

結(jié)論16若直線、PQ的斜率均存在且成等差數(shù)列,,則直線AB過(guò)定點(diǎn).

顯然,結(jié)論11、12是結(jié)論13、14的特殊情況,下面只證明結(jié)論13、14、15、16.

證明設(shè)則切線、的方程分別為兩式相減,,由此可得代入切線的方程可得,于是

若直線AB過(guò)定點(diǎn),且不與軸垂直即時(shí),直線、的斜率、相等,即亦即.整理得,即.

當(dāng)直線AB軸垂直即時(shí),得,即;

反之,若代入解得,即 存在知直線AB不與軸垂直即,則

,由此可得A、Q、B三點(diǎn)共線,即直線AB過(guò)定點(diǎn).

當(dāng)直線AB不與軸垂直即時(shí),,可解得,即 同上可得,A、Q、B三點(diǎn)共線,即直線AB過(guò)定點(diǎn)當(dāng)直線AB軸垂直即時(shí),可得直線AB也過(guò)定點(diǎn).這就證明了結(jié)論13、14、15、16.

至此,我們完成了對(duì)文【1】的結(jié)論的推廣和再發(fā)現(xiàn).

 

參考文獻(xiàn)

【1】卓文隆.一道拋物線定直線問(wèn)題的推廣.數(shù)學(xué)通訊,2014(5、6)(上半月).


新聞圖片

主辦單位:莆田第五中學(xué) 閩ICP備05007000號(hào)-1

學(xué)校信箱:ptwzbgs@163.com   郵政編碼:351100

學(xué)校地址:福建省莆田市城廂區(qū)霞林街道棠霞街215號(hào)

一区二区三区无码日韩国产粉嫩TV,国产美女久久久久,综合久久本道中文字幕,a黄大片久久网
午夜午夜精品一区二区三区文| 一区二区无码精品| 日本欧美一区二区| 老熟熟女免费一区二区三区| 免费看精品黄线在线观看| 欧美一区二区三| 91亚洲国产| 无码av一区二区三区东| 欧美无遮挡在线国产不卡| 日韩无码一级黄片| 久久久久国产一区二区三区| 31xx视频免费观看| 亚洲欧美性综合在线| 人妻中文无码专区免费| 一a一片一级一片啪啪| 亚洲中文字幕2019| 免费无码不卡中文字幕在线| 国产精品真人无码区| 中日韩亚洲国产综合精品|